Package: spsurvey 5.5.1
spsurvey: Spatial Sampling Design and Analysis
A design-based approach to statistical inference, with a focus on spatial data. Spatially balanced samples are selected using the Generalized Random Tessellation Stratified (GRTS) algorithm. The GRTS algorithm can be applied to finite resources (point geometries) and infinite resources (linear / linestring and areal / polygon geometries) and flexibly accommodates a diverse set of sampling design features, including stratification, unequal inclusion probabilities, proportional (to size) inclusion probabilities, legacy (historical) sites, a minimum distance between sites, and two options for replacement sites (reverse hierarchical order and nearest neighbor). Data are analyzed using a wide range of analysis functions that perform categorical variable analysis, continuous variable analysis, attributable risk analysis, risk difference analysis, relative risk analysis, change analysis, and trend analysis. spsurvey can also be used to summarize objects, visualize objects, select samples that are not spatially balanced, select panel samples, measure the amount of spatial balance in a sample, adjust design weights, and more. For additional details, see Dumelle et al. (2023) <doi:10.18637/jss.v105.i03>.
Authors:
spsurvey_5.5.1.tar.gz
spsurvey_5.5.1.zip(r-4.5)spsurvey_5.5.1.zip(r-4.4)spsurvey_5.5.1.zip(r-4.3)
spsurvey_5.5.1.tgz(r-4.4-any)spsurvey_5.5.1.tgz(r-4.3-any)
spsurvey_5.5.1.tar.gz(r-4.5-noble)spsurvey_5.5.1.tar.gz(r-4.4-noble)
spsurvey_5.5.1.tgz(r-4.4-emscripten)spsurvey_5.5.1.tgz(r-4.3-emscripten)
spsurvey.pdf |spsurvey.html✨
spsurvey/json (API)
NEWS
# Install 'spsurvey' in R: |
install.packages('spsurvey', repos = c('https://usepa.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/usepa/spsurvey/issues
- Illinois_River - Illinois River data
- Illinois_River_Legacy - Illinois River legacy data
- Lake_Ontario - Lake Ontario data
- NE_Lakes - New England Lakes data
- NE_Lakes_Legacy - New England Lakes legacy data
- NE_Lakes_df - New England Lakes data
- NLA_PNW - NLA PNW data
- NRSA_EPA7 - NRSA EPA7 data
Last updated 3 months agofrom:d95ce2a887. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 28 2024 |
R-4.5-win | OK | Oct 28 2024 |
R-4.5-linux | OK | Oct 28 2024 |
R-4.4-win | OK | Oct 28 2024 |
R-4.4-mac | OK | Oct 28 2024 |
R-4.3-win | OK | Oct 28 2024 |
R-4.3-mac | OK | Oct 28 2024 |
Exports:adjwgtadjwgtNRash1_wgtattrisk_analysiscat_analysiscdf_plotchange_analysiscont_analysiscont_cdfplotcont_cdftestcov_panel_dsgndiffrisk_analysiserrorprntgrtsirslocalmean_covlocalmean_varlocalmean_weightpd_summarypower_dsgnppd_plotrelrisk_analysisrevisit_bibdrevisit_dsgnrevisit_randsp_balancesp_framesp_plotsp_rbindsp_summarysp_unframestopprnttrend_analysiswarnprnt
Dependencies:AlgDesignbootclassclassIntcrossdesDBIdeldire1071gtoolsKernSmoothlatticelme4lpSolvemagrittrMASSMatrixminqamitoolsnlmenloptrnumDerivproxyRcppRcppArmadilloRcppEigens2samplingsfsurveysurvivalunitswk
Analyzing Data
Rendered fromanalysis.Rmd
usingknitr::rmarkdown
on Oct 28 2024.Last update: 2022-11-22
Started: 2021-08-17
Spatially Balanced Sampling
Rendered fromsampling.Rmd
usingknitr::rmarkdown
on Oct 28 2024.Last update: 2022-11-22
Started: 2021-08-17
Start Here
Rendered fromstart-here.Rmd
usingknitr::rmarkdown
on Oct 28 2024.Last update: 2022-11-22
Started: 2021-10-05
Summarizing and Visualizing Sampling Frames, Design Sites, and Analysis Data
Rendered fromEDA.Rmd
usingknitr::rmarkdown
on Oct 28 2024.Last update: 2022-11-22
Started: 2021-10-05